·强激光物理与技术·

基于图像处理的光学谐振腔自准直研究方法

李景润1.2, 熊木地1, 张增宝2

(1.大连海事大学信息科学技术学院,辽宁大连116026; 2.中国科学院大连化学物理研究所,化学激光重点实验室,辽宁大连116023)

摘 要: 针对我国氧碘化学激光器输出能量不断提高的情况下,主要限制光束质量的因素之一是出光过程中的光腔失调,提出了一种基于图像处理的光学谐振腔自准直研究方法。该研究方法利用氦氖穿腔光通过凹腔镜中心孔,并在凸腔镜后方放置工业相机,在屏幕上方形成一个干涉同心圆环。通过借助OpenCV库中二值化、霍夫圆检测等图像处理的方法,获得干涉同心圆环的圆心坐标,再通过以圆心为中心将图像分成上下左右四个部分,通过判断这四部分亮点像素的数量差值来预估干涉同心圆环的偏移状态,进而获得空腔条件下光学谐振腔发生变化的理论判据。实验结果表明,该方法可以获得相当精准的光学谐振腔失调判据,其失调判据选取左右亮点像素差值30000,上下亮点像素差值45000,为今后失调判据与步进电机自动调腔的结合做好充足的准备。
 关键词: 氧碘化学激光; 光腔自准直; 图像处理; 亮点像素; 偏转判据
 中图分类号: TP391.4
 文献标志码: A doi: 10.11884/HPLPB202032.190457

Optical cavity self-collimation research method based on image processing

Li Jingrun^{1,2}, Xiong Mudi¹, Zhang Zengbao²

(1. Dalian Maritime University, Institute of Information Technology, Dalian 116026, China;
2. Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China)

Abstract: Aiming at the fact that with the increasing output energy of oxygen-iodine chemical lasers in China, one of the main factors limiting the quality of the beam is the misalignment of the optical cavity during the light emission process, a method for self-collimation of optical resonators based on image processing was proposed. This research method uses helium-neon light to pass through the central hole of the concave cavity mirror, and an industrial camera is placed behind the convex cavity mirror to form an interference concentric ring above the screen. Through the image processing methods such as binarization and Hoff circle detection in the OpenCV library, the center coordinates of the interference concentric ring are obtained, and the image is divided into four parts: upper, lower, left, and right. The difference of the number of bright pixels between these four parts is used to estimate the offset state of the interference concentric ring, and then the theoretical criterion for the change of the optical resonator under the cavity condition is obtained. The experimental results show that this method can obtain quite accurate optical resonance cavity misalignment criterion. The misalignment criterion is selected from the difference between the left and right bright pixels of 30 000, and the difference between the upper and lower bright pixels of 45 000.

Key words: oxygen iodine chemical laser; cavity autocollimation; image processing; highlight pixel; deflection criterion

光学谐振腔自准直是目前氧碘化学激光器领域的研究热点,通过自动校准光学谐振腔腔镜的角度,可以达到 在保证氧碘化学激光器输出高功率的前提下,改善激光远场光束质量问题,从而提高激光到靶功率密度。

光学谐振腔自准直主要思路是通过人为不干预的条件下自动调节光学谐振腔腔镜的角度,以达到光学谐振腔 腔镜保持准直状态。针对自动调节腔镜,2007年,熊木地等^[1]提出了三点式动态准直方法,即通过3组压电陶瓷和 反光镜构成的动态驱动装置来实现反光镜的任意角度转动。2009年,尹新华等^[23]提出了利用基于系统性能评价 函数无模型最优化的随机并行梯度下降(SPGD)控制算法实现腔的自动准直调整。国外鲜有相关资料的出现。

^{*} 收稿日期:2019-12-09; 修订日期:2020-02-09

基金项目:中央高校基本科研业务费专项基金项目(01770327);中国海事局科技专项基金项目(0716-13400003N008) 作者简介:李景润(1994—),男,硕士研究生,从事图像处理和光电检测研究:ljr_lee@163.com。 通信作者:张增宝(1976—),男,博士,从事激光测量技术研究:13500732716@163.com。

与以往大多数实验方法不同,本文基于图像处理的思想,试图通过对腔镜后方的干涉同心圆环进行分析,得到 控制步进电机的驱动信号。在凸腔镜后方固定一个工业相机,将凸腔镜后方的干涉同心圆环成像到电脑屏幕上, 通过对电脑屏幕上的干涉同心圆环图像处理,获得光学谐振腔腔镜发生偏转的判据,进而为后续自准直研究提供 理论依据。本方法角度新颖,有效减少实验成本,克服硬件系统本身带来的误差,可以控制腔镜偏转的反应时间, 并且实验操作难度不大。

1 基本原理

1.1 系统结构

由凹凸腔镜和平面支撑镜组成腔长约为4m的正支虚共交非稳腔。其中凸腔镜口径约为φ45mm,曲率半径约 为5333mm,凹透镜半径约为φ140mm,曲率半径约为-14162mm。凹腔镜中心开一口,以保证氦氖穿腔光可以顺利穿过其中。凸腔镜粘接于平面支撑镜正中央。

氦氖穿腔光发出的激光,穿过凹凸腔镜构成的光学谐振腔,激光在光学谐振腔内多次反射,最后在凸腔镜后方 形成一个动态的干涉同心圆环,再通过在凸透镜后方放置滤光性 70% 左右的衰减板和一副由升降台、平移台固定 的工业相机。其系统结构如图 1 所示。

通过上述系统结构,动态的干涉同心圆环可以成像于计算机屏幕上。计算机软件开发平台基于 VS2010,并支持 MFC 开发框架,使得图像可以通过软件的方式进行处理。其软件开发平台结构如图 2 所示。

Fig. 2 Structure diagram of software development platform 图 2 软件开发平台结构图

1.2 光学仿真实验

当氦氖穿腔光通过光学谐振腔的时候,如果光学谐振腔处于不失调状态,理论上凸腔后方的图像为干涉同心圆环,为此需要利用 Zemax 光学仿真软件进行仿真实验,来验证后方的干涉图像,具体过程如图 3,4 所示。

通过光学设计仿真结果图可知,对于该光学系统而言,当腔镜未失调时,凸腔镜后方的图像为干涉同心圆环。 此方法即论证了之前的猜想,又能够为后续实验提供理论依据。

李景润等: 基于图像处理的光学谐振腔自准直研究方法

1.3 多线程存储图像

氦氖激光器由于不稳定、空气扰动、平台震动等原因,因 而成像于工业相机屏幕上的干射同心圆环是动态变化的。通 过多线程的方式将动态的衍射同心圆环逐帧分别存储在软件 环境下的两个容器 vector < Mat>当中,并且将两个容器 vector < Mat>中的干涉同心圆环图像显示于 MFC 中的两个图像框 架当中,以便对处理前后的干涉同心圆环进行对比。逐帧存储 动态的干涉同心圆环中存在的实时性、唯一性等特点,导致每 个容器存储的单帧图像并不相同,其单帧图像如图 5 所示,但 是动态的衍射同心圆环图像本身具有相似性、差异性等特点, 但总体又保持规律性、不变性等特点,所以该存储视频方式并 不会影响对图像的规律,不失公正性和正确性。

Fig. 4 Optical design simulation results 图 4 光学设计仿真结果

Fig. 5 Single frame images 图 5 单帧图像

1.4 定时器采集图像

对其中一个线程采用 MFC 自带的定时器 OnTimer 功能,由于该线程中的容器 vector<Mat>在逐帧存储图像的时候其初始速率与相机系统读取速率一致,约为 40 ms/帧,当动态的干涉同心圆环呈现在 MFC 的图像框架上的时候,速率会过大,图像变化过快,无法为每帧图像都进行图像处理相关工作。通过调整 SetTimer 函数的参数,降低容器 vector<Mat>读取动态的干涉同心圆环图像的帧率,能够预留出足够时间对每一副衍射同心圆环图像进行图像处理。

1.5 图像预处理操作

对采用定时器那一路线程中的动态的干涉同心圆环逐帧进行中值滤波和图像二值化操作,采用中值滤波方法 的目的是去掉图像中的高频噪声点,以防影响接下来的对圆心的判断。采用图像二值化操作的主要目的是为接下 来的圆检测进行准备工作。中值滤波和图像二值化操作算法如下。

(1)中值滤波:是指用模板核算子即奇数方形窗覆盖区域内所有像素值的排序,当前像素点值用位置处在中间的像素值来更新。如常见的核算子 3×3,5×5,7×7等,模板区域内的元素有 9,25 或者 49 个。以模板核算子 3×3 为例,排序后为 *a*₁, *a*₂, *a*₃, *a*₄, *a*₅, *a*₆, *a*₇, *a*₈, *a*₉, 中值滤波是指将当前像素点的值用 9 个元素排序后的第 5 个位置像素点的值 *a*₅来代替。中值滤波在边界的保存方面优于均值滤波,是经常使用的一种滤波器,但是在模板逐渐 变大时,依然会存在一定的边界模糊,画面的清晰度基本保持,因而,中值滤波对处理椒盐噪声非常有效。中值滤

波能减弱或消除傅里叶空间的高频分量,同时也影响低频分量码。

(2)图像二值化:将图像上的像素点的灰度值设置为0或者255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。一般的方法就是设定一个阈值*T*,用*T*将图像的数据分成两部分:大于*T*的像素群和小于*T*的像素群。

1.6 获取图像圆环中心坐标

氦氖穿腔光经过光学谐振腔多次反射,最后在凸透镜后方会形成干涉同心圆环。当成像在后方衰减板上的时候,会发现在衰减板上,该圆环中间镂空的形状和凸透镜大小一致,黑白相间的条纹总是有规律地变化着,但总体保持着同心圆环的状态。将工业相机对准后方的衰减板,通过升降台和平移台的控制,使得动态的干涉同心圆环成像于工业相机的中央位置,最后将动态图像成像于微软基础类库(MFC)中的图像框架上。

根据实验现象可以发现,该干涉同心圆环的中心即为圆心。当凹凸腔镜发生小角度偏移的时候,屏幕上的干涉同心圆环会发生偏移,偏移总是围绕着圆环中心改变,并且变化最为明显的是干涉同心圆环的亮度,因此获得圆心在屏幕上的坐标至关重要。本文并非一般的最小二乘法曲面拟合^[5-6]的方法,而是选用 OpenCV 库函数中的霍夫圆检测^[7-9]的方法,其圆拟合精度和效率都远远高于最小二乘法圆拟合方法。其成像效果如图 6 所示。

(a) when the circle drifts to the up

(c) when the circle drifts to the left

(b) when the circle drifts to the right

(d) when the circle drifts to the down

霍夫圆检测在图像识别的时候主要分为检测圆心和检测圆半径,其具体步骤分为以下两步。

(1)检测圆心:①对输入的图像进行边缘检测;②计算图像的梯度,并确定圆周线,其中圆周的梯度就是它的法线;③在二维霍夫空间内绘出所有图形的梯度直线,坐标点累加和的值越大则该点上直线相交的次数越多,该点越 有可能是圆心;④在霍夫空间的4邻域内进行非最大值抑制;⑤设定一个阈值,霍夫空间内累加和大于该阈值的点 就对应于圆心,如下为圆心极坐标转化公式

$$x = x_0 + r\cos\theta \tag{1}$$

$$y = y_0 + r\sin\theta \tag{2}$$

式中: x₀表示极坐标下圆心的横坐标; y₀表示极坐标下圆心的纵坐标; x 表示直角坐标系下圆心的横坐标; y 表示直 角坐标系下圆心的纵坐标; r 表示极坐标下圆的半径; θ 表示极坐标下的圆心偏转角度。

(2)检测圆半径:①计算某一个圆心到所有圆周线的距离,在这些距离中就存在该圆心所对应的圆的半径的 值,这些圆的半径值当然是相等的,并且这些圆的半径值的数量至少要2倍于其他距离值相等的数量;②预先设定 两个阈值,最小半径和最大半径。保留距离即圆的半径值在这两个半径之间,这意味着我们检测的圆不能太小,也 不能太大;③对保留下来的距离进行排序;④找到距离即圆的半径值相等的那些值,并计算相同值的数量;⑤设定 一个阈值,当相同值的数量大于该阈值,就认为该值是该圆心对应的圆半径;⑥对每一个圆心,完成上面的几个步 骤,得到所有的圆半径^[10]。

1.7 确定偏转判据

在凹凸腔镜准直的状态下,分别获取干涉同心圆环以圆心坐标为中心,左半部分、右半部分、上半部分和下半 部分四个图像矩阵,然后获取四个部分图像矩阵亮度像素的个数。通过判断左、上部分图像矩阵亮度像素个数和 右、下部分图像矩阵亮度像素个数差值范围,确定出干涉同心圆环在凹凸腔镜平准直的情况下左右部分和上下部 分亮度像素差值个数范围,进而确定出,当凹凸腔镜准直时,左右部分和上下部分图像矩阵亮度像素差值个数的最 大范围,即阈值大小。当左右部分和上下部分的图像矩阵亮度像素个数之差大于阈值,则提示向反方向调节。

2 实验结果

本文设计的基于图像处理的光学谐振腔自准直研究方法在中国科学院大连化学物理研究所激光楼进行模拟试验,系统结构实物如图7所示。分析结果如表1~5所示,可以看出,当凹凸腔镜发生左右或者俯仰变化的时候,亮 点像素的差值之间存在着一定的联系,其中红色数字代表亮点像素差值最大值,绿色数字代表亮点像素差值最小值。

(a) industrial camera hardware

(b) He-Ne laser hardware

Fig. 7 System hardware pictures 图 7 系统硬件实物图

表 1 干涉同心圆环不发生偏转,干涉同心圆环上下左右亮点像素个数与差值大小

Table 1 Interference concentric ring does not deflect, the number of pixels and the difference between

the bright dots on the top	bottom,	left and right of the interference concentric ring
----------------------------	---------	--

number of pixels on	number of pixels on	left and right	number of pixels	number of pixels	top and bottom
the left of the center	the right of the center	difference absolute	above the center	under the center	difference absolute
of the circle	of the circle	value	of the circle (top)	of the circle (bottom)	value
150 710	150 363	347	161 115	139 907	21 208
118 446	118 944	-498	127 191	110 187	17 004
105 721	109 406	-3 685	115 120	99 954	15 166
134 828	127 356	7 472	146 931	115 076	31 855
119 957	120 749	-792	128 397	112 287	16 110
153 853	143 298	10 555	166 214	130 755	35 459
127 163	111 782	15 381	132 566	106 240	26 326
152 432	155 565	-3 133	162 320	145 630	16 690
169 367	171 146	-1 779	188 648	151 679	36 969
173 025	173 278	-253	185 219	160 984	24 235
107 727	108 901	-1 174	119 281	97 274	22 007
119 220	114 936	4 284	124 845	104 233	20 612
142 698	137 765	4 933	149 384	131 028	18 356
168 131	168 945	-814	179 462	157 529	21 933
149 420	155 244	-5 824	167 163	137 327	29 836
158 102	152 588	5 514	166 537	144 063	22 474
143 257	128 863	14 394	149 602	122 352	27 250
116 565	116 573	-8	126 613	106 466	20 147

续表1 Table1 continued					
number of pixels on	number of pixels on	left and right	number of pixels	number of pixels	top and bottom
the left of the center	the right of the center	difference absolute	above the center	under the center	difference absolute
of the circle	of the circle	value	of the circle (top)	of the circle (bottom)	value
106 954	110 558	-3 604	119 237	98 239	20 998
165 295	161 699	3 596	180 566	146 267	34 299
139 435	138 201	1 234	146 345	131 259	15 086
171 428	170 506	922	188 178	153 594	34 584
114 648	116 670	-2 022	122 574	108 725	13 849
165 974	163 659	2 315	179 532	149 950	29 582
109 090	113 982	-4 892	119 492	103 546	15 946
147 150	138 862	8 288	157 155	128 744	28 411
173 151	173 071	80	185 642	160 464	25 178
170 118	169 454	664	178 271	161 243	17 028

表 2 干涉同心圆环向右发生偏转,干涉同心圆环上下左右亮点像素个数与差值大小 Table 2 Interference concentric ring is deflected to the right, the number of pixels and the difference between

the bright dots on the top	, bottom,	left and right of the interference concentric ring
----------------------------	-----------	--

number of pixels on	number of pixels on	left and right	number of pixels	number of pixels	top and bottom
the left of the center	the right of the center	difference absolute	above the center	under the center	difference absolute
of the circle	of the circle	value	of the circle (top)	of the circle (bottom)	value
67 212	223 701	156 489	151 545	139 233	12 312
67 991	203 445	135 454	146 220	125 106	21 114
80 378	159 390	79 012	132 451	107 161	25 290
81 498	176 257	94 759	140 036	117 521	22 515
70 015	207 060	137 045	146 641	130 362	16 279
73 964	185 315	111 351	142 908	116 171	26 737
83 102	148 089	64 987	124 351	106 768	17 583
76 410	176 770	100 360	137 860	115 292	22 568
64 843	223 274	158 431	151 498	136 499	14 999
73 207	193 419	120 212	144 665	121 746	22 919
75 443	176 401	100 958	136 013	115 828	20 185
72 769	218 649	145 880	155 244	136 114	19 130
68 176	203 582	135 406	145 230	126 419	18 811
83 543	143 003	59 460	121 431	105 134	16 297
78 941	163 106	84 165	130 758	111 323	19 435
85 203	140 712	55 509	121 341	104 546	16 795
76 948	187 198	110 250	142 288	121 877	20 411
67 792	215 021	147 229	151 313	131 361	19 952
75 851	179 249	103 398	137 720	117 315	20 405
72 056	205 191	133 135	148 111	128 942	19 169
80 447	161 401	80 954	133 824	107 848	25 976
73 018	199 858	126 840	148 344	124 334	24 010
81 293	160 227	78 934	133 233	108 159	25 074
72 407	207 401	134 994	148 165	131 639	16 526
17 664	211 257	193 593	121 110	107 674	13 436
28 033	200 805	172 772	119 806	108 880	10 926
18 512	204 730	186 218	116 223	106 931	9 292
21 188	212 485	191 297	124 590	108 919	15 671

表 3 干涉同心圆环向左发生偏转,干涉同心圆环上下左右亮点像素个数与差值大小

Table 3 The interference concentric ring is deflected to the left, and the number of pixels and the difference between

the bright dots on the top, bottom, left, and right of the interference concentric ring are deflected

number of pixels on	number of pixels on	left and right	number of pixels	number of pixels	top and bottom
the left of the center	the right of the center	difference absolute	above the center	under the center	difference absolute
of the circle	of the circle	value	of the circle (top)	of the circle (bottom)	value
192 314	52 255	140 059	142 574	101 844	40 730
229 577	47 856	181 721	157 423	119 803	37 620
214 631	47 848	166 783	149 527	112 862	36 665
202 363	46 299	156 064	143 299	105 297	38 002
203 765	49 982	153 783	147 673	105 863	41 810
228 985	48 638	180 347	155 875	121 537	34 338
210 921	53 734	157 187	145 497	119 082	26 415
226 174	48 803	177 371	152 282	122 542	29 740
191 768	51 614	140 154	142 192	101 021	41 171
199 888	50 107	149 781	145 717	104 109	41 608
230 226	45 781	184 445	153 651	122 207	31 444
197 829	48 687	149 142	144 154	102 274	41 880
198 439	48 554	149 885	143 359	103 545	39 814
228 478	48 736	179 742	155 472	121 550	33 922
221 287	48 660	172 627	152 940	116 790	36 150
188 684	50 234	138 450	138 092	100 775	37 317
227 902	50 225	177 677	156 301	121 616	34 685
216 518	21 413	195 105	137 346	100 353	36 993
218 200	22 530	195 670	138 716	101 831	36 885
209 917	23 301	186 616	136 289	96 786	39 503
223 064	20 969	202 095	141 508	102 315	39 193
225 719	20 984	204 735	143 473	102 999	40 474
208 883	22 815	186 068	136 065	95 463	40 602
221 445	22 227	199 218	141 612	101 866	39 746
225 780	21 538	204 242	143 149	103 926	39 223
200 232	26 669	173 563	128 817	97 983	30 834
210 864	23 623	187 241	137 469	96 836	40 633
203 253	26 655	176 598	133 668	96 141	37 527

表 4 干涉同心圆环向上发生偏转,干涉同心圆环上下左右亮点像素个数与差值大小

Table 4 The interference concentric ring is deflected upward, and the number of pixels and the difference between

the bright dots on the top, bottom, left and right of the interference concentric ring

	····g-···						
number of pixels on	number of pixels on	left and right	number of pixels	number of pixels	top and bottom		
the left of the center	the right of the center	difference absolute	above the center	under the center	difference absolute		
of the circle	of the circle	value	of the circle (top)	of the circle (bottom)	value		
136 172	132 298	3 874	227 325	41 119	186 206		
129 489	122 733	6 756	200 340	51 887	148 453		
126 496	116 854	9 642	201 074	42 183	158 891		
121 423	128 708	-7 285	220 518	29 574	190 944		
137 995	128 368	9 627	222 623	43 685	178 938		
128 997	128 443	554	230 754	26 714	204 040		
132 453	120 362	12 091	196 773	56 054	140 719		
134 189	133 298	891	231 966	35 508	196 458		
134 525	120 377	14 148	209 976	44 841	165 135		

续表 4 Table 4 continued					
number of pixels on	number of pixels on	left and right	number of pixels	number of pixels	top and bottom
the left of the center	the right of the center	difference absolute	above the center	under the center	difference absolute
of the circle	of the circle	value	of the circle (top)	of the circle (bottom)	value
137 203	128 560	8 643	215 032	50 688	164 344
129 555	124 647	4 908	208 360	45 885	162 475
132 845	124 594	8 251	204 053	53 392	150 661
119 411	124 457	-5 046	209 126	34 684	174 442
128 035	130 239	-2 204	229 146	29 125	200 021
122 666	110 222	12 444	222 546	10 494	212 052
128 976	116 031	12 945	233 039	12 078	220 961
129 350	120 178	9 172	240 208	9 465	230 743
121 845	113 214	8 631	223 511	11 672	211 839
126 511	113 857	12 654	226 685	13 777	212 908
131 166	114 407	16 759	234 193	11 500	222 693
122 526	117 807	4 719	230 761	9 719	221 042
131 432	120 228	11 204	240 533	11 251	229 282
124 978	117 650	7 328	235 412	7 384	228 028
127 081	115 916	11 165	231 248	11 860	219 388
125 773	115 399	10 374	229 051	12 224	216 827
121 264	114 572	6 692	224 936	11 026	213 910
129 720	119 720	10 000	238 693	10 875	227 818
129 597	114 550	15 047	235 807	8 494	227 313

表 5 干涉同心圆环向下发生偏转,干涉同心圆环上下左右亮点像素个数与差值大小

Table 5 The interference concentric ring is deflected downward, and the number of pixels and the difference between

the bright dots on the top, bottom, left and right of the interference concentric ring

_		-		1		
	number of pixels on	number of pixels on	left and right	number of pixels	number of pixels	top and bottom
	the left of the center	the right of the center	difference absolute	above the center	under the center	difference absolute
_	of the circle	of the circle	value	of the circle (top)	of the circle (bottom)	value
	131 272	144 841	-13 569	49 313	226 819	177 506
	125 072	134 698	-9 626	36 692	223 023	186 331
	132 521	146 542	-14 021	43 455	235 617	192 162
	122 593	143 530	-20 937	51 478	214 616	163 138
	132 688	135 034	-2 346	43 453	224 261	180 808
	130 408	144 669	-14 261	41 760	233 318	191 558
	133 906	137 991	-4 085	46 098	225 792	179 694
	127 261	135 658	-8 397	35 985	226 913	190 928
	119 619	121 666	-2 047	37 033	204 231	167 198
	132 054	140 840	-8 786	50 785	222 172	171 387
	124 653	145 920	-21 267	59 007	211 560	152 553
	116 229	126 427	-10 198	36 656	205 946	169 290
	121 717	125 277	-3 560	35 769	211 203	175 434
	132 177	137 829	-5 652	50 487	219 528	169 041
	132 867	130 443	2 424	106 279	156 975	50 696
	142 770	140 968	1 802	104 139	179 479	75 340
	129 679	143 125	-13 446	69 603	203 178	133 575
	132 483	151 991	-19 508	71 387	213 094	141 707
	139 753	153 992	-14 239	71 849	221 839	149 990
	132 423	153 088	-20 665	71 420	214 095	142 675

李景润等:	基于图像	、处理的光学	谐振腔自	准直研究方法
-------	------	--------	------	--------

续表 5 Table 5 continued					
number of pixels on	number of pixels on	left and right	number of pixels	number of pixels	top and bottom
the left of the center	the right of the center	difference absolute	above the center	under the center	difference absolute
of the circle	of the circle	value	of the circle (top)	of the circle (bottom)	value
139 085	139 757	-672	91 837	186 924	95 087
135 971	134 909	1 062	97 702	173 093	75 391
142 437	157 671	-15 234	78 107	221 921	143 814
136 040	133 516	2 524	108 136	161 317	53 181
130 392	141 900	-11 508	63 580	208 716	145 136
130 815	135 792	-4 977	103 930	162 699	58 769
129 485	135 176	-5 691	73 770	190 890	117 120
133 012	138 664	-5 652	22 155	249 612	227 457

3 结 论

正常干涉同心圆环(不偏心)状态下圆心左侧亮度点像素数量与圆心右侧亮度点像素数量之差最大值不超过 15 381,上下亮度点像素数量之差最大值为 36 969。当干涉同心圆环向右发生偏移时(随机截取向右发生偏移时的 不同偏移程度图像),圆心右侧亮度点像素数量与圆心左侧亮度点像素数量之差最小值为 55 509,上下亮度点数量 之差最大值为 26 737。当圆环向左发生偏移时(随机截取向左发生偏移时的不同偏移程度图像),圆心左侧亮度点 像素数量与圆心右侧亮度点像素数量之差最小值为 138 450,上下亮度点数量之差最大值为 41 880;由于误差的干 扰,因此可以认为当左右偏差值在 30 000 以下,则表示干涉同心圆环圆心左右不发生变化,可以将其设定为临界 阈值;同理,当上下偏差值在 45 000 以下,则表示干涉同心圆环圆心不发生上下变化,可以将其设定为阈值。

本文采用基于图像处理的光学谐振腔自准直研究方法,可以较准确地判断出凹凸腔镜失调判据,并且在实时 显示的过程中满足要求,而且可以有效消除由于氦氛激光器造成的图像不稳定的影响。该方法具有可靠性、准确 性、实时性等特点,并且失调判据可以后续与步进电机相结合,对氧碘化学激光器谐振腔自准直研究提供重要的 理论依据。

参考文献:

- [1] 熊木地, 贾思楠, 张增宝, 等. 三点式氧碘化学激光器光腔准直技术[J]. 强激光与粒子束, 2007, 19(11): 1812-1816. (Xiong Mudi, Jia Sinan, Zhang Zengbao, et al. Optical cavity collimation technology of three-point oxygen-iodine chemical laser[J]. High Power Laser and Particle Beams, 2007, 19(11): 1812-1816.)
- [2] 尹新华,梁永辉,谢文科,等.正支共焦非稳腔的自动准直调整实验研究[J].光学与光电技术, 2009, 7(2): 86-89. (Yin Xinhua, Liang Yonghui, Xie Wenke, et al. Experimental research on automatic collimation adjustment of positively supported confocal unstable cavity[J]. Optics and Optoelectronics, 2009, 7(2): 86-89.)
- [3] 尹新华. 基于SPGD优化算法的正支共焦非稳腔自动准直调整技术研究[D]. 长沙: 国防科学技术大学, 2008. (Yin Xinhua. Research on positive collimation and confocal unstable cavity automatic collimation adjustment technology based on SPGD optimization algorithm[D]. Changsha: National University of Defense Technology, 2008)
- [4] 许晨晨, 戴舒, 张保俊, 等. 基于Matlab的图像直方图选择去噪方法[J]. 计算机与网络, 2019, 45(16): 34-35. (Xu Chenchen, Dai Shu, Zhang Baojun, et al. Denoising method of image histogram selection based on Matlab[J]. Computer and Network, 2019, 45(16): 34-35.)
- [5] 胡亚红, 邓年茂, 何俊华, 等. 激光谐振腔自动稳定调节的一种方法[J]. 光子学报, 2001, 30(7): 871-874. (Hu Yahong, Deng Nianmao, He Junhua, et al. A method for automatic stable adjustment of laser resonant cavity[J]. Journal of Photonics, 2001, 30(7): 871-874)
- [6] 王亚妮, 胡有宁, 李广文. 基于最小二乘法的圆柱体油罐装置拟合[J]. 西安文理学院学报(自然科学版), 2017, 20(6): 11-14. (Wang Ya'ni, Hu Youning, Li Guangwen. Fitting of cylindrical oil tank device based on least square method[J]. Journal of Xi'an University of Arts and Science (Natural Science Edition), 2017, 20(6): 11-14)
- [7] 于彭, 蒋理兴, 王安成, 等. 外缺圆圆心检测[J]. 测绘与空间地理信息, 2018, 41(7): 207-211. (Yu Peng, Jiang Lixing, Wang Ancheng, et al. Outer circle center detection[J]. Surveying and Spatial Geographic Information, 2018, 41(7): 207-211)
- [8] 沈新平, 彭刚, 袁志强. 基于霍夫变换和RANSAC算法的绝缘子定位方法[J]. 电子测量技术, 2017, 40(6): 132-137. (Shen Xinping, Peng Gang, Yuan Zhiqiang. Insulator positioning method based on Hough transform and RANSAC algorithm [J]. Electronic Measurement Technology, 2017, 40(6): 132-137)
- [9] 仲崇权, 赵亮. 基于霍夫变换的工位点识别算法设计与实现[J]. 物联网技术, 2016, 6(8): 14-17. (Zhong Chongquan, Zhao Liang. Design and implementation of station identification algorithm based on hough transform[J]. Internet of Things Technology, 2016, 6(8): 14-17)
- [10] 毛庆洲,潘志敏,高文武.利用迭代霍夫圆变换实现成捆棒材可靠计数[J].武汉大学学报(信息科学版), 2014, 39(3): 373-378. (Mao Qingzhou, Pan Zhimin, Gao Wenwu. Using iterative Hough round transform and connected area to count steel bars reliabley[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 373-378.)